Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806662

RESUMO

In this study, a thick hollow axisymmetric functionally graded (FG) cylinder is investigated for steady-state elastic stresses using an iteration technique and the finite element method. Here, we have considered a functionally graded cylinder tailored with the material property, namely, Young's modulus, varying in an exponential form from the inner to outer radius of the cylinder. A mathematical formulation for stress analysis of functionally graded cylinder under internal and external pressure conditions is developed using constitutive relations for stress-strain, strain-displacement relations and the equation of equilibrium. The effect of the in-homogeneity parameter on radial displacement, radial and tangential stresses in a functionally graded cylinder made up of a High Carbon Steel (HCS) metal matrix, reinforced with Magnesium Oxide (MgO) ceramic is analyzed. The iterative method implemented is fast and converges to the solution which can be further improved by considering a higher number of iterations. This is depicted graphically by using radial displacement and stresses in a pressurized functionally graded cylinder obtained for the first two iterations. An iterative solution for non-FGM (or homogeneous material) is validated using the finite element method. The mechanical responses of the functionally graded cylinder obtained from the iterative method and the finite element method are then compared and found to be in good agreement. Results are presented in graphical and tabular form along with their interpretations.

2.
Healthcare (Basel) ; 10(5)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35628018

RESUMO

The evolution of the coronavirus (COVID-19) disease took a toll on the social, healthcare, economic, and psychological prosperity of human beings. In the past couple of months, many organizations, individuals, and governments have adopted Twitter to convey their sentiments on COVID-19, the lockdown, the pandemic, and hashtags. This paper aims to analyze the psychological reactions and discourse of Twitter users related to COVID-19. In this experiment, Latent Dirichlet Allocation (LDA) has been used for topic modeling. In addition, a Bidirectional Long Short-Term Memory (BiLSTM) model and various classification techniques such as random forest, support vector machine, logistic regression, naive Bayes, decision tree, logistic regression with stochastic gradient descent optimizer, and majority voting classifier have been adapted for analyzing the polarity of sentiment. The effectiveness of the aforesaid approaches along with LDA modeling has been tested, validated, and compared with several benchmark datasets and on a newly generated dataset for analysis. To achieve better results, a dual dataset approach has been incorporated to determine the frequency of positive and negative tweets and word clouds, which helps to identify the most effective model for analyzing the corpora. The experimental result shows that the BiLSTM approach outperforms the other approaches with an accuracy of 96.7%.

3.
Materials (Basel) ; 15(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269034

RESUMO

Creep is an irreversible time-dependent deformation in which a material under constant mechanical stress and elevated temperature for a considerably prolonged period of time, starts to undergo permanent deformation. Creep deformation occurs in three stages namely, primary, secondary and tertiary. Out of these three stages, secondary or steady state creep is particularly an area of engineering interest as it has almost a constant creep rate. Creep deformation plays a significant role in understanding effective service life of an engineering component working under high temperature conditions as such components such as super-heater and re-heater tubes and headers in a boiler, jet engines operating at temperature as high as 1200 ∘C, usually experience a failure or rupture due to creep phenomenon. Design engineers keep a close attention on working stress conditions and elevated temperature under which an engineering component is expected to work as these conditions determine the onset of creep behavior in an engineering component. By recognizing the parameters of material response to creep behavior, engineers can analyse the useful service life and hazardous working conditions for an engineering components. Recognizing the creep phenomenon as high temperature design limitation, ASME Boiler and Pressure Vessel Code have provided guidelines on maximum allowable stresses for materials to be used in creep range. One of the criteria for determination of allowable stresses is 1% creep deformation of material in 100,000 h of service. Thus, the study of creep behavior in engineering components pertaining to high stress and temperature working conditions is very important as it affects the reliability and performance of the engineering components. The aim of our study is to understand the behavior of secondary creep deformation so that an advanced reinforced functionally graded material with better creep resistance, can be designed. In this paper, a secondary creep analysis of functionally graded (FG) thick-walled rotating cylinder under internal and external pressure is conducted. The novelty of the model intends to specify secondary creep stresses and strains by employing exponential, linear and quadratic volume reinforcement for SiCp ceramic in Al metal matrix in radial direction. This will help us to understand the effect of volume reinforcement in FG cylinder under internal/external pressure and rotating centrifugal body force by obtaining secondary creep stresses and strains. The response of the FG cylinder with isotropic material is analyzed and the solution for stress-strain rates in radial and tangential directions are obtained in closed form. Comparison of steady state creep stresses and strains under exponential, linear and quadratic volume reinforcement profiles are discussed and presented graphically.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...